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R. Stephen Devoto, Masami Ohnishi**
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ABSTRACT

Mechanisms leading to loss of alpha particles from non-axi-

symmetric tandem mirrors are considered. Stochastic diffusion due to

bounce-drift resonances can cause rapid radial loss of high energy

particles but can be suppressed by imposing a 20% rise in axisymnetric

field before the quadruple transition sections. With this field, radial

losses due to resonances should be minimal until alpha particles near

thermal energies, when they enter the resonance plateau regime. Retention

in the plasma of 60-80% of alpha-particle energy appears possible; precise

calculation requires computation of drift orbits, of which two typical

examples, resonant and non-resonant, are presented.

*Work performed under the auspices of the U.S. Department of Energy by
the Lawrence Livermore National Laboratory under contract number W-7405-
ENG-48 .
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I. Introduction

In studies of tandem mirror reactors, it is generally assumed

that the bulk of alpha-particle kinetic energy is transferred to the fuel

ions and electrons, the alpha particles being lost when they reach thermal

energies. Since they are initially only magnetically confined, a fraction

is born in the loss cone and lost in a transit time. This fraction is

f =1/2 R

where R is the ratio of the maximum B field to the true field in the

central cell. The maximum field will generally be the plug mirror field

but could be the outer field in an outer thermal barrier configuration.

For typical conditions f = 10-15%.

When the alpha-particle energy E <Zi+i , where @i is the

center cell confining potential, then potential confinement is important

and axial confinement time follows the Pastukhov relation

IIT
c
- nT ii (Zi@i/Ti) exp (Zi@i/Ti)

where rii is the ion-ion collision time and Zi and Ti are the ion

charge and temperature. We see that thermal alpha-particles are confined

better than fuel ions by the factor 2 exp (@i/Ti) = 25. Thus, to

prevent ash build-up, alpha particles must be lost radially, either as

they drag down in energy or after thermalization.

Mechanisms for radial

have been identified by Ryutov

involves particles which drift

losses in non-axisymnetric tandem mirrors

and Stupakov.l The major mechanism

azimuthally by odd multiples of 7r/2 as

they pass from one mirror to the other, the so-called resonant particles.
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The locations of the resonances depend on the plasma model adopted and,

most importantly, on the velocity pitch angle 0= sin ‘l(V1/V). In the

next section, the resonance locations in phase space for alpha particles

are obtained with the aid of a model suitable for reactors.

Three types of diffusion are associated with the presence of

resonances: resonant banana, in which ions have adequate time to trace out

bananas before collisions, resonant plateau, where banana orbits are

interrupted by collisions before completion, and stochastic diffusion,

which arises when resonant ions suffer large enough radial deflection on

each reflection to move them to another resonance surface. Some

consideration of the applicability of these different mechanisms to

alpha-particle transport is given in the second section.

These initial considerations show that it is necessary to compute

alpha-particle trajectories. As a first step, we describe a program which

fits a long-thin approximation to the magnetic fields to the output from

the EFFI code.2 In the last section some typical orbits, including

resonant orbits, are described.

II. Alpha-Particle Resonances

The conditions for resonance

lA@l = kT/2 k

where A* is the amount of azimuthal

are

= 1,3,5, ...... (1)

drift between reflections. The

condition k = O in Eq. (1) corresponds to non-resonant banana orbits.l

Although a certain amount of azimuthal drift occurs due to field line

curvature in the transition region, the dominant amount for lAI/Jl>> O

is due to E x B and grad IB [in the central cell of length Lc. We find.-
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Lc
A~=— (M? + @n2e $)

‘VIIB ‘r zel!l
(2)

In order to proceed further, we must adopt a plasma model. We assume

uniform electron and ion temperatures and utilize the long thin approxima-

tion relating vacuum fields, Bv, to true fields. It has been argued by
.

Ryutov and Stupakov J that the rapid radial mixing of electrons in the

plugs will ensure uniform Te. The temperature of the fuel ions would

be expected to vary with radius, although initial computations for TMX

show little variation.
3

For the density profile

n = nof(x), x -r/r
P

we find

+= Teln f + constant

and

~2 = B; (1 -/30f)

where /$ is the plasma #l at r=o. Equation (2) becomes

W Lc (f’/rrf)
A+ =

2 ● 1/2 coso Bv (l-~of) 1~2 “

[

2E sin 8 Pof
Te - 2Z (l- 1pof) “

(3)

(4)

(5)

(6)

m is the alpha-particle mass, E its energy and Ze its charge.

It is evident from Eq. (6) that the dependence ofA$ on r is

strongly dependent on the form of f. For a power-like law

f= (1- XY)!Y,8>1 (7)
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A$–>masr–>r
P’

a clearly undesirable trait. Another, more

desirable function involves an exponential,

f= exp(-xy) (8)

For the Gaussian form (y = 2), f’/rf is a constant andA~~ has only weak

dependence on r in the core of the plasma. Thus, A+ will vary little as

an ion is deflected radially at each mirror and the particle will tend to

migrate radially out of the machine if it is on a resonance. A certain

amount of control over the radial profile is available via choice of beam

aiming, etc., and it is likely that the profile in a reactor will be

flatter in the center than a Gaussian profile. We choose Y = 4 for the

balance of this

A+ =

[

Te -

for Te and c in

work, yielding

2.89 X 10-4M1/2Lx2
c

E 1/2 cos O r2
P

Bv(l - ~@ f)l/2 “

csin2f3 @of

2Z (l-PO
‘)1

eV,

and other quantities

At 10WE or

(9)

M the alpha-particle mass in units of proton mass,

in the S1.

vanishing /30 the form of the resonant curves is

quite simple: lines of constant V,l= V cos 0. Neglecting the second

term of Eq. (9), the low -~ limit for the k resonance is

3.4 x 10 ‘8M (LcTe) 2 X4

+ p=o)
‘ k2 r; B$ (1 - pof)

(lo)
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As V,,—>0 the number of resonance increases without bound, except for

the value of VL = V sintlwhere the quantity in brackets in Eq. (9)

vanishes. The latter condition yields (non-resonant) bananasl and

marks the division between ~-dominated resonances occuring at higher

VL and ~x~ dominated resonances occurring at lower V1. The energy

separating these two regions is

cL(k=O) = 2ZTe(l//30f-l) (11)

and varies from a few times Te at small r to very large energies at

large r (f-o). Thus, all resonances at large radii are governed by ExB--

drift.

To show the explicit form of the resonant curves for alpha

particles, we can consider a particular device, the Tandem Mirror Next

Step (TMNS), currently under study. Representative parameters for this

machine are given in Table I. Resonant curves are given in Figs. 1-4 at

p?asma radii of 10(f = .999), 20 (f= .98) 40(f= .74) and60 cm

(f = .22). Near the axis, (Fig. 1) the resonant curves are confined to

small values of @ while at moderate radii (Figs. 2-3) resonances extend

nearly to the loss cone. Thus, near the reactor axis, where the

alpha-particle production rate is highest, it is unlikely that

alpha-particles will be lost radially before reaching thermal energies.

Whether or not the thermalized alpha particles will accumulate to .

densities sufficient to “poison” the reaction can be answered

definitively only by diffusion computations which include both fuel

and alpha ions.
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The large number of resonances at moderate radii (Fig. 3) seem

to indicate that radial losses could be substantial. However, the radial

deflection on many of these resonances can be eliminated by a modest

axisymnetric mirror before the quadruple field rise.4 The boundary

for a mirror ratio of 1.25 is shown in Figs. 1-4. Essentially, all

resonances with k >1 are removed, i.e., have tlr = O for r = 20, 4(Icm

and none remain for r = 10, 60 cm. The mirror ratio corresponds to a

lower vacuum mirror ratio when the axially uniform plasma pressure is

taken into account. We find

Rv =R[l- @o (1 - l/R) ] 1/2

and Rv = 1.19 for R = 1.25 at PO = 0.5.

(12)

The imposition of an axisymnetric mirror could have a

disadvantageous effect on thermalized alpha particles by removing the

mechanism for their removal. We can examine this question with the aid

of Fig. 5 which shows the low energy region of Fig. 3 for r = 40 cm. We

see that alpha-particles having energy below 150 keV will still

experience resonant diffusion. An equivalent plot for r = 10 cm shows

the resonant region only at much lower energies.

It should be emphasized that the results of this section are

strongly dependent on Lc. Larger values of Lc will cause all

resonant curves to shift to higher values of V,,,thus moving more

resonances into the region where quadruple effects are important. The

transition between ~-dominated and ExB dominated resonances depends only. .

on Te,@o and the assumed profile and will remain fixed in phase

space.
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III. Diffusion

Ryutov and Stupakovl suggest that high energy alpha particles

would be in the stochastic regime where the diffusion coefficient is

independent of collision frequency

D- (8r)2 61/2 cos tg/Lc

The condition for stochastic diffusion is

f=10~lrl&#4

at a resonance. We can evaluate

>1

this expression from Eq. (9),

(13)

(14)

5.8 X 10
-4 “1/2 L X2

f = 1+1 ~1/2
c .

cos 8 r
P
2Bv@

[

X4 #). f 3x4pof
(g

●sin26 PO f
- 1) Te- ( ~ -1)

2zg 1(15)

with g-l- ~of.

In order to evaluate the criterion of Ineq. (14), we obtained

values for (i3r/r)using a code5 which computes guiding-center motion in

the vacuum field of TMNS. Such calculations ignore the effect of finite

~ on field-line curvature in the transition section where the radial

displacement takes place, but should give reasonable estimates of the

magnitude of the displacement. The deflection tlrfor r = 40 cm is

plotted VS. ~ll\E at ~ = 3.52 MeV in Fig. 6 for a particular magnet design

for TMNS (MAF/03B). We note a maximum 18r/rl of about .140 occurring

near the loss cone. The negat”ve ~r occurs because of the direction of
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the curvature vector at the end of the machine; rather surprising is the

change in sign of 8r (and also of the direction of azimuthal drift) near

El,/c= .4. This feature arises because the particular combination of

axisymnetric and quadruple fields for this design causes the curvature

to change sign part way through the transition section. This particular

magnetic field design also allows the quadruple field to penetrate too

far into the central cell, as reflected by the finite tjr/r for EII/E-O.

Calculations at other radii display the same behavior as Fig. 6; values

for lower energy may be found from the scaling i3r/r-<~-

From the curve in Fig. 6 and Eq. (15), we compute values for ~

as listed in Table II. Wesee that stochastic diffusion should not be a .

problem for TMNS, providing a step in the axisymnetric field is intro-

duced to eliminate the higher-k resonances. The criterion of Ineq. (14)

is sensitive to Lc; raising Lc to 100 m, a typical value for a

reactor could bring stochastic behavior for k = 3 and 6 ==3.5 MeV.

The scaling relation (13) also applies to the resonant plateau

regime. More favorable scaling occurs in the resonant banana regime,

D - r2(i5r/r)2~-3’2 (16)

The latter is valid under the approximate conditions

(17)

where Va is the collision frequency for alpha-fuel ion interactions, given

approximately by
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7.2 x 10-12 ni
Va =

~3/2

for ni in m-s and E in eV. Inequality (17) can be rewritten in the

form

7.2 X 10-12 ni Lc
V,l >

18r/r 13/2 ● 3/2

(18)

(19)

This (approximate) boundary is indicated in Fig. 5. We see that only the

thermalized alphas will be in the resonant plateau regime (fuel ions are

also in this regime). Thus, even if only a very slight axisymnetric

mirror is employed and several resonances remain, the alpha particles are

expec~d to survive quite well to thermal energies. Total alpha particle

energy deposition fraction of 60 - 80% appears possible.
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IV. Magnetic Field in the Tandem Mirror Next Step (TMNS)

We make a simple magnetic field model based upon the long-thin

approximation. This model saves computational time and enables us to

easily obtain the gradient of magnetic field for calculating the drift

orbits of alpha particles in the TMNS. In this approximation, the vacuum

magnetic field is given by 6,

Bx = - ;(f ’ - g),

By=- *(f’ +9),

(20a)

(20b)

Bz = f,

where f and g are arbitrary functions of z which specify the shape of the

axisynnnetric and quadruple fields. Once we obtain equations for f and g,

the magnetic field can be produced by the above equations. The constant

flux surfaces are also given by ‘

X2<q(z) + y 2 e“’(z)= rz

where q(z) is defined by

e~(z) stands for the ellipticity of the cross section of the plasma.

The derivative of Eq. (22) gives the following equation,

(21)

(22)

g(z) = q’(z) f(z).

17
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Since f(z) corresponds to the magnetic field magnitude on the magnetic

axis, we get the numerical values from the results of EFFI codez as

shown in Fig. 7 with the first and second derivatives of f(z) calculated

from the data by difference formulae.

In order to get the

(22), we take a specific fie”

in x-y-z coordinates,

values of g(z), i.e., T(Z) through Eq.

d line passing through the point (rO,O,O)

x= ro[f(0)e~(z)/f(z)]l’2 (24)

The numerical values of x-coordinates-of the field line are given by EFFI

code. Hence, the values of q(z) can be obtained by,

7+2 f(z
q(z) =ln[~fol

‘o

The numerical values ofq(z) are shown with the derivatives in Fig. 8.

We can compute, based upon these numerical data, the coefficients of the

cubic spline functions using the least square approximation by the cubic

splines with variables knots and produce the functions, f,~ and their

derivatives. In producing the magnetic field by Eqs. (20a-c), we should

note the following relations.

(i) z <-zl

(ii) -zl~z~- ‘o

‘(iii) Izl<zo

(iv)
‘o= ‘=zl

(v) z >Zl

(25)

f(z) = f(lzl), q(z) = -~(lzl)

f(z) = Bs,q(z) ‘-~(l Zl)

f(z) = Bs, T(Z) = O

f(z) =Bs, q(z) ‘~(lZl)

f(z) =f(lzl), ~(z) =7(121)
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where ZO and ZI are the maximum values of z coordinates which satisfy

the relations ofq(z) = O and f(z) = Bs, respectively. The i~e~ualitY

Zo<zl holds in the present magnetic field for the TMNS. Thus, the

quadruple field extends into the central cell, contrary to the recorrunen-

dationof Section II. “

Using this model, we can calculate the magnetic field line, the

components of Vx B, VB, etc. For example, a field line and the

gradient of magnetic field on the field line are depicted in Fig. 9 and

10, respectively.

v. Typical orbits in the TMNS

The guiding center equations of motions are given by

d~ll
V7.+

dt = ‘p m

and

(26)

(27)

where~ll and% are the velocities of an alpha particle guiding

center parallel anmdperpendicular to the magnetic field. ~ is the

magnetic moment. Although the axial electric potential is assumed to be

negligibly small compared with the alpha particle energy, the effects of

radial electric field on the drift motion are taken into consideration.

The plasma/3 is assumed to be so low that the gradient B drift caused by

the finite beta effects can be safely neglected. The trajectories of

alpha particles in the TMNS are obtained by solving Eqs. (26) and (27)

under the TMNS magnetic field configuration and the appropriate initial

conditions. 7
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Figure 11 shows the trajectories of a 3.5 MeV alpha particle

projected onto the x-z, y-z, x-y and r-z planes. The pitch angle of the

particle is very close to the loss cone angle in the central-cell mirrors.

The particle is so barely trapped as to move deeply into the transition

region and suffer from large radial deflection due to the quadruple

field. Since the velocity parallel to the magnetic

than the azimuthal velocity

bounce, a$, is very Small.

due to E_x~ drift, the

The particle deflected

deflected out at the other end due

quadruple field. Figure 12 shows

field lines on to the mid-plane of

field is much larger

angular deflection per

in at one end is

to the 90° mutual orientation of the

the tr~”ectory projected along the

the central cell. Although the drift

surface of the particle deviates from the magnetic flux surface, the

deviation is less than the Larmor radius. Then, this type of trajectory

is not very important for the transport of alpha particles.

Figure 13 shows the trajectories of a deeply trapped particle,

which rotates nearly 90° due to E x B drift per bounce and satisfies the--

k = 1 resonance condition. Incidentally, the pitch angle and energy of

the particle are 85° and 3.5 MeV. The trajectory projected along the

field lines onto the mid-plane are shown in Fig. 14. We can recognize

the considerable deviation of the drift orbit from the magnetic surface.

Figure 15 shows the positions (denoted by dots) and the directions

(denoted by plus and minus) of the particle in crossing the mid-plane of

the central cell. Although the results look random, we get the banana

orbit, shown in Fig. 16, by rotating the successive points in Fig. 15

onto the first quadrant. The orbit is the so-called resonance banana and

24
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its width is comparable to or larger than the Larmor radius. As dis-

cussed previously, this type of trajectory plays an important role in the

transport of alpha particles. Further development of the computer code to

include finite ~effects on drift is underway.
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Table I. Representative Parameters for TMNS

PO = 0.5 Bv = 3.5T

Lc=30m
‘P

= 54 cm

Te = 40 keV n . ~ 4 ~ ~014cm-3
o“

Bm = 9.5T R = 3.64

Table II. Values of # = 18rll~AV$r!
for various resonances at 3.5 MeV

k 10 cm 20 cm 40 cm 60 cm

1 .2 .2 .1 .04

3 .8 .7 .3 .2

5 2 1.2 .6 .3

7 1.6 .8 .4

.
d
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